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An Algorithm For Computing Matrix Square Roots With Application To Riccati Equation Imp lementation

D. W. Repperger

Aerospace Medical Research Laboratory
Wright—Patterson Air Force Base, Ohio 45433

Abstract symmetric matrix. The convergence of the algorithm
will be proved with upper and lower apriori bounds
on the converged value determined at any point along

An iterative algorithm is presented for obtain— the sequential process. This algorithm can then be
ing a positive definite symmetric square root of a applied to the implementation of Riccati type equa—
positive definite symmetric matrix . This algorithm tions. The Riccati type equations that are applicable
has application in the implementation of Riccati for this approach include, but are not limited to,
type equations. The approach presented here has the the discrete version of the partitioned Riccati
advantage that apriori upper and lower bounds to solutions [8,10], and the various covariance express—
the converged answer can be obtained sequentially ions which occur in square root filtering methods
at any point in the iterative process. These already discussed [3,151 . It is noted that the square
apriori bounds can also be obtained for the Riccati root algorithm presented here will be compared
equation using a discrete implementation procedure. (through examples) to the Matrix Sign approach till
Theorems on convergence are proved and examples and not to the triangular factorization methods. In

• are worked, a hard to find reference (l6J another (but different)
algorithm was developed which has been discussed by
Bellman [17]. The algorithm in (161 , however, has
limitations on the norm of the matrix considered and

I. Introduction appears to be related to a version of the spectra l
factorization problem . In Astrom ’s book (181 , similar
algorithms result from studies of related spectral
factorization problems.

The study of optimal control and estimation the— In order to better understand why the factoriza—
ory has been influenced in recen t years by factori— tion methods yield algorithms which have numerical
zation methods in the analytic expression of the advantages over other methods , this paper is divided
filtering equations [1 ,2,3]. Compu tationally the in four parts. First the motivation for using this
solution of filtering and smoothing equations appears approach is demonstrated by working a scalar example
numerically better behaved [4] when the equations using an algorithm from Number Theory called Euclid ’s
are of the square root type in lieu of the standard algorithm to characterize an irrational number in
forms . In the study of Riccati type equations [5), terms of continued frac t ions . Such methods are used
an attempt has been made to apply the factorization in Number Theory [19 ,20], and f o r  scalar irra tionals
methods directly to the steady state Riccati equa— (such as a square root), they give rise to definitions
tion but an algorithm to produce these results is such as ‘ mos t efficient expansion” and “bes t possible

C’ required. approximation”. By defining a structure of the contin.-
In the study of Riccati type equa t ions , many seth— gad fraction expansion subject to certain constraints ,

ods exist to determine solutions such as iterative the definition of “most efficient expansion” can be
procedures [6,7], the partitioned algorithm approach g iven in an exp licit manner. Using a sequential proce-

cu (8,9,101 , the Matrix Sign Function method [11,12], dure defined as Euclid’s algorithm [19,201 , the con tin-
and other methods applicable in numerical integra— ued frac tion expansion is obtained for the irrational

F t ion, e.g. (15]. The Matrix Sign Function approach number i t .  Euclid ’s me thod ( or a “most efficient cx—
is one method which has the advantage of obtaining pansion”) is then constructed for a scalar square root.
additional non—positiv e definite solutions through Apriori upper and lower bounds are obtained for both
the use of a Symplectic matrix composed of the ma— expansions of these two scalar irrational numbers.
trices in the Riccati equation . This aspect has Part II of this paper introduces the “square roo t
been discussed by Bucy [13) and Potter [14), algorithm” which differs from Euclid’s method. The

This paper will develop an algorithm for deter— square root algorithm is applied first to the scalar
mining the square root of a positive definite square root and the resulting continued fraction cx—
*The research repor ted in this paper was sponsored pansion is compared to Euclid’s method. The apriori
by Aerospace Medical Research Laboratory, Aero— upper and lower bounds are also calculated. The third
space Medical Division , Air Force Systems Command , part of this paper extends the scalar square root al—
Wright—Patterson Air Force Base, Ohio 45433. Fur— goriths to the matrix case . Theorems on convergence
ther reproduction is authorized to satisfy needs are proved and examples are worked. The matrix square
of the U.S. Government.
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1
root a lgor i thm considered here is compared (through —

an example) to the Matr ix  Sign Approach and the con-
vergence of the algorithm is studied numerically, and let a1 [

~ ll
~ 

Induc tively it follows that:
Finally, the four th part of this paper considers 1

the  app lication of this approach to the implementa— — a ition of Riccati type equations. A manner of obtain-
ing apriori upper and lower bounds is demonstrated and ai 

(
~~ 

] and this comp letes the algorithm for

and an algorithm is demonstrated which extends the ~most
ie f fi ci en t  expansion” as it relates in the con—

for  Riccati  type equations. Some theorems are given all a . It is now appropriate to give a def in it ion  of

results  obtained here for  the matr ix  case into an text of the continued f rac t ions  in equations (1 ,2) .
algorithm for  computing the Riccati  equation . The Definition: “h os t E f f i c i e n t  Expansion ”
aprior i  upper and lower bounds for  the Ricca t i  equ— The most e f f i c i en t  [19 ,20] expansion of an ir r a—
tion are obtained sequent ia l ly  as in the matr ix  case. tional scalar number 

~~ 
by a continued f ract ion  rep—

F i r s t , par t  I of this paper will introduce Euclid ’ s resentation is the one in which can be accurat ely
algor i thm and provide a motivat ion fo r  using fac— expressed to as many decimals as possible by the
torization algorithms, fewest number of integer terms in the expansion. It

is noted tha t  W is subject to the constraint  of equa-
tion (2)  with each a positiv e integers. It  has

II .  Part—I Euclid’ s Algori thm—A Motivation For been shown [19 ,20] that Euclid’ s method sa t i s f ies
Using Square Root Methods this proper ty  fo r  scalar irrationals. An example

will now be worked with the irrat ional  number ,~
to i l lus t ra te  Euclid’ s algorithm.

It is well known that  numerical problems occur in Example (1):
computing Riccati solutions or other matrix equations
if the matrices are ill conditioned (21]. One measure Let ~ be the irrational number it , i.e. — 3.14159+

0
of ill conditioning occurs if the eigenvalues of the Hence ao=(~ 01 = 3. To calculate a1, compu te
free system are seperated by more than one order of 1
magnitude. On’e would expect, therefore , that factor— 1 ~ ,~ 

—

izat ion methods should prove to have numerical advan—
tages because the square root matrix may have eigen— or 1 1
values with less dispersion then the original free 

1 
= — = .14159 7. 06+

system matrix . In an effort to study this effect num—
• erically , Euclid’s algorithm is introduced and a sca— Now compute a1 = [

~ ~
] 7. In this manner we calcu—

lar example is worked from Number Theory on an irra— late (using double precision (29 digits) on a
t ional number.  The purpose of this example is to ill— CDC computer) the following numerical results :
us tra te to the reader the relationship between the
fac tor iza t ion  methods to continued f r ac t i o n  approaches it = 

~ ~ 
3.1415 92653589793238462643383279

and also to def ine the numerical advantages (in terms 1 — 7.0625133059310457697930051531
of a definition called “mos t ef f ic ient”) of the f a c t —  

~ 2 = 15.996594406685694 11310599874
orization methods considered here. First some defini- 

3 
1.0034172310133977856369454934

dons are necessary . 
4 292.63459101223866070785852178

Let ~ denote a scalar irrational n umber. The pro— 
~ 

1.5758180949841629954527421461
blem of°interest is to determine a continued fraction 6 1.7366595609113341887024369765
expansion of In terms of rational numbers. First 

7 
1.3574791573503535151332712575 )

the def inition of a continued fraction is specified 8 2.7973658867611542733590927681
as follows (19,20]: 9 1.254129398564984677733290166 6

10 = 3.9350032135077287460064498245
W <a0, a1, , 

~~~~~ 
.
~~~~ (1) 

~ 11 = 1.0695150407541735890218572566

12 — 14.385376015764735321479897720
which is notation for:

1 This gives rise to a0=3, a1=7, a2
.
~l5 , a3 l, a4—292 ,

W — a0 + a1 + 1 a~ ”1, a6 1, a7 l, a8 2, a =1, a10 3, a11 1, and
a2 + 1 a12 l4 which resul ts  in t~ e fol’owing p a r t i a l

a3 + f rac t ion  expansion :
1

+ 1 it = 3+ 7+l
aN + 15+ 1 

—

1 + 1
~(2)  292+ 1

where each ai is subj ect to the constra int  of being 1+1
positive and an integer. Then Euclid ’s algorithm (20) 1+1
is defined as follows: 1+1
Denote: a j  = (~ ~

] (3) 2+1
1+1

where aj  is defi ned as the nearest integer smaller 3+ 1
than the i r r a t iona l  number 

~~~~
. Euclid’ s algo ri thm for  1+ 1

comput ing the aj  from the 
~~ 

p roceeds as follows: 14+

(4)a0 — 

~~~ 
now proceeding as an algorithm , let ,
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In order to study convergence and to develop apriori — 1.366025403784436347975702660 5
bounds, it is of interest to study the partial sums — 2.7320508075688992137673133780
of equation (4). Let r0 a0, r1— a + 1/a1, and in f 3 — 1.3660254037843965712518405766
general: — 2.7320508075691909097423020388

r = ~~~ a1, •. . , a~~~ (5) — 1.3660254037838529560257256617
N 

C 6 — 2.7320508075732481355762416877
It has bean shown explicitly [19 ,20] that for the 

~ 7 
1.3660254037762821195840238963

scalar case , the following upper and lower bounds 
~ 8 

— 2.7320508076297576012776604042
exist for it : 

~ 9 
— 1.3660254036708340246350351294
— 2. 7320508084168328955065207969

r0.<r2
.(r

4
( ....< r 

N 
— ~ <‘‘‘.<r5<r <

’r — 1.3660254022021315334827392008

u s  N—~~O~ (6) which resul ts in a l ,a1 l,a2 2,a3 l,a4 2,a
5
’l ,

which gives rise to apriori bounds of the form: a6=2,a7—l ,a8—2,a9”I, 
and a10 2. in this manner the

“mos t eff icient” me thod to calculate the square

/ 333 / . . ../~~~/... ~~‘355 ~~~~ 22 root of 3 is as follows using the continued fraction
3 c~~ r~ ~

— 

~
- 

~~
- 

~~
. 

~~~~~~ ~~~~~~ 
•-y approach : 

1
(7) 3 = 1 +  1 +  1

The scalar version of this proof was presented for 2+ 1
the square root of a scalar number in [22] , the 1+ 1
matrix case will be presented in the sequel. There— 2+ 1
fore by calculating r

0 and r1, an upper and lower 1+ 1
bound on it can be determined apriori. By then calcu— 2+
la ting r

2 
and r3, an even more accurate bound on it

can then be determined. This procedure can be con— ‘ (8)
tinued indefinitely with convergence to values as The periodic nature of the a1 terms in equation (8)
close as desired. To illustrate to the reader how is of interest because it is known that in Riccati
these apriori bounds can be obtained for the irra— equation expansions of the partitioned algori thm
tional number it , the terms r0, ~~~~~ r8 are calcu— approach [8], this same periodicity occurs. The
lated for the fraction in equation (4). periodicity obtained here numerically occurs due to:

r = = 3.0 = C j+z f or all j
r~ = 22/7 — 3.142857142857+
r2 

= 333/106 — 3.14150943396226415094+ with a1 = 1 (i odd)
r = 355/113 = 3.14159292035+ a.~~1 

2 (i odd)
103993/33102 3.141592653011+ 

1

r = 104348/33215 — 3.14159265392142+ and this is a result due to the following identity :
r
5 

— 208341/66317 3.141592653467+
= 312689/99532 = 3.1415926536189+ 1 + \JT — 1

r
8 

= 833719/265381 = 3.14159265358107777+ 1 
— 1

It is easily seen from these numerical values that The results obtained here so far indicate that using
the r- satisfy the relationships specified by equa— the “mos t ef f i c i e nt” approach , the square root meth—
tion t6). Also from the example it is observed that ods have a periodic property. If this method were to
the first four terms of the expression r

4 give be applied to the ma trix case , the results do not ex—
accuracy beyond 7 decimal places. One should now be tend readily due to the fact that the definition
motivated to apply Euclid’s algorithm to a quadratic “mos t e f f i c i ent” does not have the same meaning in
equation to observe the results. the matrix case. In order to have an algorithm that

does extend to the matrix case, the square root al—
III Euclid ’s Algorithm Applied To A Scalar Square gorithm will next be presented . The square root al—

Root gorithm gives identical results to the “mos t ef f i -
cient” algor ithm f o r  the scalar, case. The square

Taking as an example the square root of 3 , the  root a lgor i thm , however , can be extended to obtain
most efficient method will be studied numerically matrix square roots , to implement the Riecatl equa—
using example (2): tion , and , in a d d it i?n , to determine upper  and low —
Example (2): er apriori bounds.
Expanding the square root of 3 to 30 decimal places
yields: IV — Part II— The Square Root Algorithm (Scalar Case)

— iT 1.732050807568877293527446341505. Now Consider example (2) to determine the square root
the calculation of the a

1 and will proceed as for of 3 via the follow ing sequence of steps : —
i t:  

a0 = [ 1.732+ ] — 1 Let W — ~J’T
1 Rewri te this as

1 = ‘4T — 1 — 1.36+ W — 1 + ( \f~i — 1) (9) D

Hence a —~~~~ 1] — l ,A summary of the first 11 terms or W 1 +  1 1 +  1
yields : i 1

DlST Ni~.,~. - ~v cosrj
TiTO~: 

- 
• a
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1 1
W — 1 + 1+A1~~ ~~~ 

— j~ + 
- 

~~~ ~., where the inequality representation for two matrices
2’’ / i L  u A)~B implies that A—B is positive def in i te  and I is

I u the nxn identity matrix. If equation (15) is not Sat—
I~ 

(~~~+l) I isfied for a specified S0 and S1, then we require:
L J (10)

S0 — c 1)0 , and S1 — c ~~~~~ (16)
or: 1

W — 1 + 1 + 1 for  some ~ >0. The ensuing derivation follows exac—
2 + 1 t ly with (16) replaced by (15) , but fo r notation

1 + 1 simplicity, the inequality of equation (15) will be
2 + 

~~~ .._ used . To derive the square root algorithm, proceed
1 +1 as in equations (9—12) for the scalar case.

2+ Deno te:
s s~

/2 (17)
(11)

Since 3 = 1.7320508+ , then the continued fraction This can be written as:
of interest is: 1/21 S0 = I + S 1 — I  (18)

1.732+ = 1 + 1+ 1
2+ 1 Theorem 1 will now be helpful in the derivation :

1+ 1 Theorem 1:
2 + 1  1 2  -u 1 2

1 + .,__.. s~
/2 — I = (s1_I) (s1~

l 
+1) = (S1’ +1Y1(S1— I )

2+ (19a)
. s112 + I =(S 1—I) (Si’ _ I) ’l — (S~~

2 — I Y ’(S 1— I ) (19b)
(12 )

This square root approach yields numerical answers Proof : Consider the identities:
fo r this example which are identical to the ’~inost e f f —  1/2 1/2
icientamethod. For completeness the partial sums r0, (S1 

—I)(S 1 +1) S1— I (2 0a)
r1, .. . ,r10 are computed and disp layed here: 

l’Z 1/2
(S 1 + I)(S —I) — S1—I (20b)

r0 = l  1
r1 = 2/1 — 2.0  Equation (l9a) follows by pre and pos t mul tiplying
r 2 = 5/3 — 1.667 equations (20a—b) by (s 1l12 +1) 1 which is positive

= 7/4 = 1.750 definite. Equation (19b ) follows by pre and post
r 4 = 19/11 — 1.7272 mult ip lying equations (20a—b) by (~~~I2 _I) 1 which
r 5 = 26/15 = 1.7333 is known to be positive definite by the inequality (15).
r 6 = 71/41 = 1.7317 Q .E .D.

= 97/ 56 = 1.73214 The derivation of the algorithm will now continue by
• r 8 = 265/153 — 1.732026 rewriting equation (18) as follows :

r9 
= 362/209 — 1.732057 

l’2
r10 989/571 = 1.732049 S — I + (S

1
’ —I)(S 2+I ) (S~~

2+IY’1 (21)
It is easily demonstrated that: °

From equation (20a) this implies (21) can be wr itten :
r <r2<r4<r6<r8<r10<.’ ‘4T<.~ .~(rg<r7<r5<r3<r1 1/2 —1

(13) S0 = i + (S
1
—I) (S

~ 
+ I] (22)

and approximations to the square root of 3 can be det-
ermined by calculating only r0 and r1; or more accu— Since for two matrices A ,B, (ABY~~ B

1A~~ , it is
ra te ly be calculating r2 and r3, etc. This approach desired to represent equation (22) as:
will  now be extended to the mat rix case. 1’2

S0 = I + I 
~~ 

+I)(S 1— 1)~~ ]
—~ (2 3)

V-Pa rt 111—Extension of The Algor i thm Fo r Determining
Mat rix Square Roots This can be wri t ten as:

In order to develop an a lgor i thm fo r  matrix square S = I + I j ( S
1—I)~~ + S

i, 2 
(S 1— I )  1 

~~~ (24)
roots , it Is necessa ry to accurately define the ma- 0 1
t rices of in teres t .  Let S1 be an (nxn) po sitive def— Now the procedure used in equations ( 17—1 8) wil l  be
m i te symmetric matrix. The (nxn) matrix S0 which r eapp lied to equatio n (24) resul t ing in:
is the squa re root of S1 is required to be positive 1/2 1d e f i n i t e  symmetr ic  and s a t i s f y :  S = I + I [ (S j— I~~ 1 + [I+S i — I ] ( S 1—I Y ’1] (25)

S0 S~ — S1 (14) It is worthwhile to rewrite this as:

where T denotes m a t r i x  transpose . S is defined as the S0 = I + I (2(S —iY4 + ( — I J ( S  1)
_i 

~~l

the square root matrix of S1. For s?mp lici ty in the 1 1 1
ensuing derivation , it w i l l  be assumed that: Using the results of equation (19b) yields:

S0 - I .) 0 and S~ - 1>0  (15) S0 - I + I(2(S1-IY
1 ~~~~~~ + IJ~~ ]~~ (2 6)

937



Now expanding the inner term y ie ld s :  R0 
— I (34a)

S0 1+I[ 2(S 1— I Y - ~ +fl I+(S~~
’2 + l_ l ) ] _ 1 

1 —~ (27) R1 
— I + I L 2 ( S 1— I ) ”

~i
4 (34b)

This can be rewr i t t en  as:

S - I + I[ 2(S 1-I) 1 + I [2 1+(S
h/2 _ I ) ]

_ 1 
]-~ (28) -1 -l -l1 

1/2 — I + (2 ( S 1— I) +11 1+R N 2 ) I (34c)
The observant reader may now compare the term (S

1 —I)
in equation (18) with the same term in the inner most
brackets of equation (28) .  The next  step in the der— Theorem 2 contains the proper i ties  of convergence of
ivation is to repeat the procedure from equations this a lgor i thm.
(18—28) resulting in the next expression as follows :

P2 1/2 Theorem 2:
S0=I+I[2( S 1—IY ’+I[2 l+(S1 — I ) ( S 1 +I) (S~~~

2+I)” 1] ]~~~ ~im RN — (35a)
(29) N— p ~~

etc. Since the derivation is periodic from this point with the following aprior i  bounds :
on , the  results can be summarized as follows : 1/2

Let S = 21 (30a) 
R <1t

2<R4<R6<
’<RN — S1 <~ ‘<R 7~~~R

5~~~R
3 <~R 1

A 
—l him N —.’~~~ (35b)

S
8 

= 2( S~ — I ) (30b ) -

The proof of theorem (2) is giv~ n in appendix (A) .
Then : 1 — —l The scalar version of th is  proof was given in [22]

S0 = I+ILs
B
+I[s

A+ILsB
+I[SA+I[sB~ 

..
~~ 

l~ ] 1 and similar proofs  of the  scalar example are given
(31) in the references on Number Theory [19 ,20] . Some

This could also be wr i t ten  as follows : examples will now be worked to i l lustrate  the  con—
vergence properi tles  of the algorithm and also how

S0 
= I + + I the apriori bounds may be used.

5 + 1
S

8 
+ I VII Som e Numerical  Examples Using The Matrix

S
A 

+ I Square Root Algori thm :
SB +

As the simplist example to observ e the  proc e—
(32) dure presented here , consider the square root of

The expressions (31—32) obtained are desired for  the following mat r ix :
several reasons. F i r s t , the m a t r i x  case reduces to
the “most e f f i c i e n t” approach as S

A and S
5 

becom e Example 3
scalars . Secondly, the matrices 5A and S~ are “4 .0  , 0.0
positive def in i t e  and it is desireable to have this S — I
p roper ty  to obtain apriori bounds. Thi rd ly , i t  ap— 1 L°~° 25.0
pears that  this method has applicat ion in the im-
plement at ion of the Riccati  equation as observed in Using the algor i thm results in R10 and R11 as
references [3 ,8 ,15] . The theorems on convergence follows :
will now be g iven with their p roofs  in Appendix (A) .
Some examples will then be worked to i l lus t ra te  — —
this approach. E1.999797, 0.0 1 2.000068, 0.0

R10 I and
VI—Convergence Proofs of The Square Root Algorithm L0.o , 4 .74647~j 0.0 5.l764l~J

In order to establish a theorem on the convergence Please recall the inequali ty:
of the nested m a t r i x  sequence (31), a sequence of 1,2
par t ia l  sums of the expression (31) will be derived.  

~N S
Denote Ri, i 0 ,l ,”’ as the mat r ix  part ial  sums of 1
(31) which reduce to the scalar partial sums r i is true for  all N even integers and all N odd inte—
def ined in equation (5).  gers. Also , the apriori  bounds R10 and R 11 

indicate
the accuracy of this  procedure.

= I 
—l —l 

(33a)
= I + I[ 2(S 1 I) ] (33b) Ex ample 4

E4. o , 6.01
R 2 — I + I [2 ( S~~—I) ~~ +1(2 11— 1 1—1 (33c) S — I (~~)

— l —l I 6.0 ,
R
3 

= 1+I[2(S1—I) +I[2I+[2(Si
_I)’ ]~ ] ]

(33d ) Using the Matr ix  Square Root Algorithm results in
R

30 
and R31 

as fol lows :

or as an a l g o r i t h m :
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Tt.788847 , .8943981 fll.788860 , .8 9 4 447 1  Example 6
R30 ], R31 ]— 

- ~~~894398 , 4.919241 L~
894447 , 4.919423 r4.o ,

It is in t~ resting to compute the products R30R30
T 1 

= 

~ 25.2] (37)
and R31R 1

.
The algorithm yields :

T fl3 .99992l37l , 5.999700491 I
R R — I , r772480 , 1.844994 I r.77ls36 , 1.845506130 5.999700491 , 24.9988798_J p30— I R31— I

— (,~ .844994, 4.64696,~J , ~j.845506, 4.64709,.!j
T 

(“'4 .0000555 , 6.0002036
R31

R — I The interesting result occ~ rs by considering the31 6.0002036 , 25.000758O!J produc ts R30R30
T and R31R31.

which can be compared to S1 of equation (36). The T r4.0007282h , 9.9988490431
next example was taken from reference [11] to serve R30R30 = I
as a comparison to the approach presented here and 

1.1.998849043 , 24.99831445,~,,J
also to look at higher order systems .
Example 5 —

1.2 x 10~ , 230. , l0~~ 
R31R3

’
~ = 

[“ .0012o2784 lO.000l234041

s1 = ( 230. , 1000. L1o.000123404 , 25.OOl42l5l6J

10. 1. o.~J which can be compared to S
1 
of equation (37); this

procedure appears to work if S is only positive
Using the Matrix Sign Approach [11] , Denman found semi—definite. Theorem (3) ill?Istrates that a best
the computed square root as: estimate of a matrix square root can be obtained

— by taking the mean value of the best two apriori
346.40961 , 0.608420 , .0287555 1 bounds .

I Theorem 3:
S = 0.608420 , 31.61690 , .0303966 I (3a) The “best es t imate” of a mat r ix  square root
0 I can be obtained as follows:

0.0287555 , 0.0303966 , 0.7OS87±J

Using the Matrix Square Root Algorithm presented ‘
~~
‘ — max (1/2) RN + RN+i~ 

(38a)
here , the results ob tained were: 0 N

—

328.739943 , .5742 69 , .027283 (3b) The error in the estimate specified by equa-
tion (38a) can be no worse than the following

R632 .574269 , 31.616842, .030394 bound :

.027283 • .030394 , .7O5S6
~,j S0 

— S
0 ~ & II RN+~ 

— RNII (38b )
364.918997 , .644195, .030298

R63f 
- 

.644195 , 31.616978, .030400 1 Hence even if S0 is not known , R.e and R., prov ide
- an estimate of the accuracy of thts procedure . One

.030298 , .030400 , . 705868 1 may now take appropriate  mat r ix  norms and examine
= examples 3,4, and 5. Appendix B demonstrates a proof

Obviously for higher order systems, some modes con— of this theorem with an appropriate definition of
verge much faster than other modes. In other words “best estimate”. This result can be seen numerically
the ill conditioning of S

1 
will effect this algor— in examples (3—5). The estimate specified by equa—

ithm (by slowing down its convergence) in a manner don (38a) is as accurate a method as possible to
dependent on the degree of ill conditioning of S1. guess a matrix square root. The methods obtained
Also the effects of numerical bias occur in this here will now be applied to the discrete version of
algorithm as can be seen because the element in the the Riccati equation.
thi rd  row , third column o~ R632 and ~~~~ has appar-
ently converged independent of the remilning elements. VIII Part IV—Application of This Approach To
Continuing the calculation ‘of RN for N> 2000 gave no Discrete Implementation of The Riccati Equation
additional change in this term . This element may be
numerically biased (through roundoff errors or trun— In the implementation of the continuous Riccat i
cation errors  involved in the mat r ix  inversion sub— equation at discrete  times 0t 0<t1<t .  wi th
routine used here) .  An excellent discussion of this
problem can be found in Bierman ( 4 ] .  One more ex— ~~~~~— t~~~~1 

— t , the fol lowing recursion relat ionships
ample was wnrked to numerically stud y S in the event can be obtaihed :
it was only positive semi—def in i t e .  

T
— P0 + A [ w + ~~~ ~—h A (39)
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where P0, A , and W are quantities obtained over the The results of this last section seem most interest—
time interval~~ of a Riccati equation with zero in— ing in the study of the accuracy of methods to is—
itial conditions. Equation (39) appears in one form plement the Riccati equation . It is the contention
or another in the partitioned algorithm approach of here that since these methods reduce to the “most
Lainiotis [8], the square root filtering algorithms efficient” method in the scalar case , they should be
of Morf and Kajiath (3], and in Potter and ~.lomble considered first in the calculation of Riccati type
(151. To apply this approach similar to the manner equations.
in which the matrix algorithm (34a—c) was obtained ,
note the following sequences: IX Summary and Conclusions

— P 0 An iterative algorithm is presented for obtaining

— — r matrix square roots. The techniques used to derive
— P0 + A [W] A the algorithm can be used in discrete implementation

— —1 —l T of the Riccati equation. The advantage of this ap-
R2 = P +A (W+(P0] I A proach is the development of apriori bounds on both
— —l T 1 —l T the matrix computations and the Riccati solutions.
R3 — P0+A (W+ (P0+A(W] A ] I A Examples are worked to illustrate this method.

The Riccati Equation Algorithm becomes:
Appendix A

R = P (40a)

R1 = 9 + A [W]
I
AT (40b) In this appendix all inequalitfes refer to matrix

inequalities , i.e. A~~B implies x LA—B Ix is positive
for all vectors x of the appropriate dimensions. To
prove theorem 2, lemmas 1—7 must be shown to be true.

— — —1 —I T Lemma (l):
RN — 

~

‘
0 

+ A [W+(RN_2) I A (40c) Let A1, B, A2, C1, C2 be positive definite matriceswith :
Theorem (4) contains the application of the approach —1here for Riccati equations. A 1 — [ 5~1 + C —1 (A.l)
Theorem 4:
If P0~ .O, A~.O, and W~.O , then : A2 — [ B 1 + C~

1 —l (A.2)

(a )  All Rj>O , i O ,l,~~ if C1) C2, then A ~sA
(b) K~~~M 

, N even, M odd with N<K , and M<K. 1 2

P r o o f :
(c) The following apriori bounds exist as

asA ~t—’O) for the continuous case: A 1 
= 8~~ + C~

1

R0<R2~~R4~~
R
6
<~~~~ lim PN~~~~~~~ 7<RS<R3<Rl -l -l -lN—.-~~ or and A = B + C2

since C1~.C 2 and both matrices are positive 
definite

with apriori bounds: 
—l —l

1 —l T then we have [17] :C2 ) C1 but
P<P + A [W+(P) ] A - 

<
‘
u r n  9

N 
‘‘

N—’-~~ —l - -l

<1.<PO+A(W+(P +A[WJ 1A
T

J
_1
]
1A
T
<P0 + ALW ]

1
AT = B 1

i.e. as many apriori bounds can be found as is de— 1
sired for the numerical scheme. 

—(d) The best estimate of 9N (in the continuous case) or A 1 
— B~~ ~ A1

1 
— B ’1 (A.3)

can be expressed as follows : 2

or A
2 
) A1

1 
, but since both matrices are positive

— max (1/2) RN + R..~,1) (41) definite implies A
1
) A

2
.

N Q.E .D.
Lemma 2:

(e)The error in the estimate specified by equation Let A,B, and C be positive def inite matrices with
(41) can be no worse than the following bound :

C — (A~~ + B 1)~~~ , then the following inequalities
I.’ — — arise :

I’ PN - P
H Il H RN+l - R J )

C <B (A.4)

The proof of thecrem (4) is outlined in Append ix (C). C <A (A.5)
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1

Proof of Lenmm 2~ But using lermria (2) implies: 
—

Note C 1 
— A 1 + B 1

Hence C 1
~~~A

1 
R3 

— I ~~~ ~1

And c 1>.i’1 
S +i

or
Therefore C<B and C<A follows. R3 

=

Q.E.D.
Lemma 3
The matrix subsequences RN for N’.O,2,4,6,’” (all Hence R3<R 1
even integers) form a monotonically increasing
matrix sequence, i.e. For notation simplicity let B— ._~_.~E > 0, then:

R-(R2<R4<R6< R3 — I + B~~ +(I+R1)~~ ]
_l

Proof: R5 
= I + ( B 1 +(I+R3) 

1
The proof is by mathematical induction. By calcula-
tion:

Nov use lemma (1). If I+R1~~.I+R3, then this implies
R = I from lemma (1) that ~~~~ R5 or R

1> 
R
3~ - R5. Now

R2 I+[2(S1—I) 
1+(21) l~ ~> r = K assume the results hold for RN, iz. is necessary to

0
show that they hold for RN+2 . We assume:

Hence R ~~R . For notation simplici ty let B— ’ ) 0,
then: 2 a

(N odd)

= I + [B 1 +(1+R )
_1
]
_1 

(A.6) 
But:

R4 = I + (B 1 +(I+R
2
)
1
]
1 (A .7) RN = I + [ ~~~ + (I+RN 2)

1
]’

But from lemma (1) if I+R
2~~

I+R , and using (A.6) RN+2 = I+[ B~~ + (I+RN )
1 

i
—i

and (A.7) yields:

bu t from lemma (1) if I+R
N <

I+RN 2  this implies
R
4~~ 

R
2 RN+2 <RN- Since the results hold for N+l,3,5, then

Now assume the results hold for RN’ it is necessary 
they hold for all N. 

Q.E.D.
to show that they hold for RN+2~ 

Note we assume
Lemma (5) The following statements are true :

RN~ RN —2 (N even) (A.5.l) All R
N 
(N even) are bounded above by K

1
.

(A.5.2) All (N odd) are bounded below by K .
0but R

N 
= I + [ B’~~

N- 
N(A.5.3) lim R R

N

= I + [B 1 + (I+RN )
~~~

] ’ ( A . 5 .4 )  lim RN — R
Mlx~

But from lemma (1) if (I+RN )~~
. I+RN 2 ~

mp1ies 
Proof:

RN+2~~ RN - Since the results hold for N 0 , and N—2, To show (A.5.1) is true , i.e.

they hold for all N. Q.E.D. R <R2<R4<RÔ< <Ri 
(A.8)

Lemma (4 ) :  0

The matrix subsequences R
N 

for N’.1,3,5,7,~~
” (all 

First it is known that all R
N 
(N even) satisfy:

odd integers) form a monotonically decreasing matrix
sequence , i.e.

R~~~R3~~
R
5~~

R~~~R9> > RN+2 = I + [(*~ + ( I+RN ) 1]
~~

—1

~~~in the proof is by mathematical induction. By 
or 

Rr4+2 
— I — [ (~

-
~~

— +(I+RN)~~~
] 1

calculation:
Now use lemma 2 which implies that:

— (1/2) [S1 
+ I ]

S — I

s1-i 
—1 —1 

RN+2 = I 
2

R3 
- I + [ (~) 

+ I(2I+[2(S1
_I)

_1
I ] ~~~
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or (for N odd), then from lemma (1), A1—A2<0 . SinceS1 + ~ this is true for N 3 , it holds for all N.
2 — R1 (A.9) Q.E.D.

Assume RN 1 .~~ RN—2 ( for  N even). By mathematical
S1+I induction:

Since R — 1<—  for S >1, then (A.9) implies A
1 — A2.)~ 0 by lemma (1)o 2 1

that R
~~.2<Ri for all N even. Since this is true for N—2, it holds for all N.

Q . E .D .
Lemma (7):To show (A.5.2) is true, i.e. 

Q.E,D. 

For N even lim RN - 
RNw

R1~~ R3~> K5 ~~ ~~ 
R~~~ 

“ ‘  K (M odd)
0

(A.lO) For M odd urn RN =

Proof:
and —

R1 
— 

1 
~~~ I — R if S

1> I Proof :
0 The proof is by contradiction . Assume the contrary and

Hence R
1> 

K , but all R
N 
(M odd) satisfy: and

0

RM+2 = I + t (_~ _) + 
~~~~~ 

~-l

The following expression is easily calculated:
or

— I = [ + (I+RN)
1 j —l

> 0 ~~~ = lin ~~~~~~ = = lim[B~~ +(I+RN l
)_l

J
_l

or RN+2-
~~ 

I=R for all N odd. This implies (A.5.2) 
— [B =1 + (I+RN 2

)
~~~I

1

is true for all M odd. —

Q.E.D. If N is odd , then from lemma (6) this irnplies~~~ <O.
If N is even , then from lemma (6) this imp1ies~~.>O.

The statements (A.5.3) and (A.5.4) follow from These last two Statements yield a contradiction if
(A.5. l), (A.5.2), lemmas (3,4) and the theorems of .~~~ .4’ 0. Note  ii~~.,= 0, then everything is consistent.
monotone operators in a Banach space [23]. This completes the proof of theorem (2).
Lemma (6):

— RN <0 if N is odd Appendix B

R~~~1 
— RN>O if N is even 

To show the best estimate of a matrix square root is
is:

Proof: The following expression can be calculated:
S max (1/2) 1 RN +

S — I 1 ° N
— RN ( (~

) + (I+RN i
)
~~~
]
1 

Define the bes t es t ima te~~ as that estini:L~ which
0

— 

minimizes : 

mm ~ = II~ O — S
1 ~ (8 .2 )
1/2

rewrite this as:
0

RN+i — RN — A1 
— A

2 
But from lemma (3) and (4) of appendix A we have
(for some N)

From lemma (1) we have: A1—A 2~~ 0 if RN 1). RN_2 R0<R2
<R

4< 
.. . .<ft~~~~5

”2
< R2N+l <.

..<R <R
and A

1
—A

2 <0 
if RN_i ~~ (8.3)but from lemma (5) we know R< R 2~~~

R
1 Now substituting ~~ from (B.l) into (B.2) yields :

Hence:
1/2 1

— K
0 

> 0 ,N = 0 .-i — I~ ~ 
— s1 ) + -

~~ (RN_l —S
~
/2) ii

R2 
— K

1 
< 0 ,N 1 The following inequality now resul ts:

By mathematical induction assume RN_i <RN—2 ~ ‘ 114 RN _ s~
2 ) 1I + II ~~ ~RN -i — S 1/2) ~
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The inequality (B.4) has the smallest upper bound if [51 Repperger , D.W., ’A Square Roo t of A Matrix Ap—

RN and RN 1  are chosen as the largest values of the proach To Obtain The Solution To A Steady State Matrix
Riccati Equation ”, IEEE Trans. Automat. Contr ., Vol.

computed apriori bounds in (B.3). The term best es— AC—21, No. 5, Oc tober , 1976, pp. 786—787.
timate is the guess of 

~~ 
which minimizes the right [6] D.L. Kleinman,”On An I tera tive Techn ique For Ric—

hand side of equation (5.4). cad Equation Computations ”. IEEE Trans. Au tomat. Contr .
To show that the statement (3b) of theorem (3) Vol. AC—13, pp. 114—115 , February ,  1968.

is true , the worst case guesses of RN and R.~+1 
are [7] D.L. Kleinman ,”Iterative Solution of Algebratic
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upper bound (38b). AC 19, pp. 252—254, June , 1974.
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August , 1975 , pp. 555—556.
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